Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Nat Commun ; 15(1): 136, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167838

RESUMO

Craniofacial abnormalities account for approximately one third of birth defects. The regulatory programs that build the face require precisely controlled spatiotemporal gene expression, achieved through tissue-specific enhancers. Clusters of coactivated enhancers and their target genes, known as superenhancers, are important in determining cell identity but have been largely unexplored in development. In this study we identified superenhancer regions unique to human embryonic craniofacial tissue. To demonstrate the importance of such regions in craniofacial development and disease, we focused on an ~600 kb noncoding region located between NPVF and NFE2L3. We identified long range interactions with this region in both human and mouse embryonic craniofacial tissue with the anterior portion of the HOXA gene cluster. Mice lacking this superenhancer exhibit perinatal lethality, and present with highly penetrant skull defects and orofacial clefts phenocopying Hoxa2-/- mice. Moreover, we identified two cases of de novo copy number changes of the superenhancer in humans both with severe craniofacial abnormalities. This evidence suggests we have identified a critical noncoding locus control region that specifically regulates anterior HOXA genes and copy number changes are pathogenic in human patients.


Assuntos
Fenda Labial , Fissura Palatina , Gravidez , Feminino , Humanos , Camundongos , Animais , Fenda Labial/genética , Regulação da Expressão Gênica no Desenvolvimento , Fissura Palatina/genética , Genes Homeobox , Fatores de Transcrição de Zíper de Leucina Básica/genética
2.
Orthod Craniofac Res ; 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38059401

RESUMO

BACKGROUND: The maternal diet is essential to offspring development, but the specific effects on tooth morphology are still unknown. The aim of this study was to evaluate the effects of altering maternal calcium (Ca) and phosphorus (P) supplementation during gestation and lactation on offspring dentition. METHODS: Pregnant mice were fed an experimental diet containing a threefold increase in Ca and a threefold decrease in P compared to the standard mouse chow diet at embryonic Day 0.5 (E0.5). Offspring mice were maintained on standard or experimental diets from post-natal Day 0 to weaning, then fed control diets until 6 weeks of age. Six-week-old offspring heads were collected and scanned using micro-computed tomography. Dental morphometrics of offspring maxillary and mandibular first and third molars (n = 5-6 per diet/per sex) were determined. A two-way ANOVA test was employed to verify the existence of any significant differences between groups. The significance level was set at P < .05. RESULTS: A two-way ANOVA revealed a statistically significant interaction between the effects of diet and sex on the upper and lower dentition. Moreover, experimental diet-fed female offspring exhibited smaller molars with shorter mesiodistal width and larger pulp chambers relative to controls, while experimental diet-fed male offspring possessed larger molars with wider mesiodistal width and smaller pulp chambers. CONCLUSION: Our findings reveal that altering the maternal and offspring dietary Ca:P ratio during gestation, lactation and weaning led to significant, sex-specific changes in the offspring dentition. The differences in dentition appeared to be correlated with the sex-specific changes in the craniofacial skeleton.

3.
Brain ; 146(12): 5070-5085, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37635302

RESUMO

RNA polymerase III (Pol III)-related hypomyelinating leukodystrophy (POLR3-HLD), also known as 4H leukodystrophy, is a severe neurodegenerative disease characterized by the cardinal features of hypomyelination, hypodontia and hypogonadotropic hypogonadism. POLR3-HLD is caused by biallelic pathogenic variants in genes encoding Pol III subunits. While approximately half of all patients carry mutations in POLR3B encoding the RNA polymerase III subunit B, there is no in vivo model of leukodystrophy based on mutation of this Pol III subunit. Here, we determined the impact of POLR3BΔ10 (Δ10) on Pol III in human cells and developed and characterized an inducible/conditional mouse model of leukodystrophy using the orthologous Δ10 mutation in mice. The molecular mechanism of Pol III dysfunction was determined in human cells by affinity purification-mass spectrometry and western blot. Postnatal induction with tamoxifen induced expression of the orthologous Δ10 hypomorph in triple transgenic Pdgfrα-Cre/ERT; R26-Stopfl-EYFP; Polr3bfl mice. CNS and non-CNS features were characterized using a variety of techniques including microCT, ex vivo MRI, immunofluorescence, immunohistochemistry, spectral confocal reflectance microscopy and western blot. Lineage tracing and time series analysis of oligodendrocyte subpopulation dynamics based on co-labelling with lineage-specific and/or proliferation markers were performed. Proteomics suggested that Δ10 causes a Pol III assembly defect, while western blots demonstrated reduced POLR3BΔ10 expression in the cytoplasm and nucleus in human cells. In mice, postnatal Pdgfrα-dependent expression of the orthologous murine mutant protein resulted in recessive phenotypes including severe hypomyelination leading to ataxia, tremor, seizures and limited survival, as well as hypodontia and craniofacial abnormalities. Hypomyelination was confirmed and characterized using classic methods to quantify myelin components such as myelin basic protein and lipids, results which agreed with those produced using modern methods to quantify myelin based on the physical properties of myelin membranes. Lineage tracing uncovered the underlying mechanism for the hypomyelinating phenotype: defective oligodendrocyte precursor proliferation and differentiation resulted in a failure to produce an adequate number of mature oligodendrocytes during postnatal myelinogenesis. In summary, we characterized the Polr3bΔ10 mutation and developed an animal model that recapitulates features of POLR3-HLD caused by POLR3B mutations, shedding light on disease pathogenesis, and opening the door to the development of therapeutic interventions.


Assuntos
Anodontia , Anormalidades Craniofaciais , Doenças Desmielinizantes , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central , Doenças Neurodegenerativas , Humanos , Animais , Camundongos , RNA Polimerase III/genética , RNA Polimerase III/metabolismo , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Mutação/genética
4.
Nat Genet ; 55(6): 1034-1047, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37277650

RESUMO

Down syndrome (DS), the genetic condition caused by trisomy 21, is characterized by variable cognitive impairment, immune dysregulation, dysmorphogenesis and increased prevalence of diverse co-occurring conditions. The mechanisms by which trisomy 21 causes these effects remain largely unknown. We demonstrate that triplication of the interferon receptor (IFNR) gene cluster on chromosome 21 is necessary for multiple phenotypes in a mouse model of DS. Whole-blood transcriptome analysis demonstrated that IFNR overexpression associates with chronic interferon hyperactivity and inflammation in people with DS. To define the contribution of this locus to DS phenotypes, we used genome editing to correct its copy number in a mouse model of DS, which normalized antiviral responses, prevented heart malformations, ameliorated developmental delays, improved cognition and attenuated craniofacial anomalies. Triplication of the Ifnr locus modulates hallmarks of DS in mice, suggesting that trisomy 21 elicits an interferonopathy potentially amenable to therapeutic intervention.


Assuntos
Síndrome de Down , Cardiopatias Congênitas , Animais , Camundongos , Síndrome de Down/genética , Receptores de Interferon/genética , Interferons , Fenótipo , Modelos Animais de Doenças
5.
Mamm Genome ; 34(3): 453-463, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37341808

RESUMO

The external ear develops from an organized convergence of ventrally migrating neural crest cells into the first and second branchial arches. Defects in external ear position are often symptomatic of complex syndromes such as Apert, Treacher-Collins, and Crouzon Syndrome. The low set ears (Lse) spontaneous mouse mutant is characterized by the dominant inheritance of a ventrally shifted external ear position and an abnormal external auditory meatus (EAM). We identified the causative mutation as a 148 Kb tandem duplication on Chromosome 7, which includes the entire coding sequences of Fgf3 and Fgf4. Duplications of FGF3 and FGF4 occur in 11q duplication syndrome in humans and are associated with craniofacial anomalies, among other features. Intercrosses of Lse-affected mice revealed perinatal lethality in homozygotes, and Lse/Lse embryos display additional phenotypes including polydactyly, abnormal eye morphology, and cleft secondary palate. The duplication results in increased Fgf3 and Fgf4 expression in the branchial arches and additional discrete domains in the developing embryo. This ectopic overexpression resulted in functional FGF signaling, demonstrated by increased Spry2 and Etv5 expression in overlapping domains of the developing arches. Finally, a genetic interaction between Fgf3/4 overexpression and Twist1, a regulator of skull suture development, resulted in perinatal lethality, cleft palate, and polydactyly in compound heterozygotes. These data indicate a role for Fgf3 and Fgf4 in external ear and palate development and provide a novel mouse model for further interrogation of the biological consequences of human FGF3/4 duplication.


Assuntos
Fatores de Crescimento de Fibroblastos , Polidactilia , Animais , Camundongos , Humanos , Fatores de Crescimento de Fibroblastos/genética , Mutação , Modelos Animais de Doenças , Fator 3 de Crescimento de Fibroblastos/genética
6.
Dev Dyn ; 252(10): 1303-1315, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37183792

RESUMO

BACKGROUND: Genetic variants of the transcription factor SIX1 and its co-factor EYA1 underlie 50% of Branchio-oto-renal syndrome (BOR) cases. BOR is characterized by craniofacial defects, including malformed middle ear ossicles leading to conductive hearing loss. In this work, we expand our knowledge of the Six1 gene regulatory network by using a Six1-null mouse line to assess gene expression profiles of E10.5 mandibular arches, which give rise to the neural crest (NC)-derived middle ear ossicles and lower jaw, via bulk RNA sequencing. RESULTS: Our transcriptomic analysis led to the identification of 808 differentially expressed genes that are related to translation, NC cell differentiation, osteogenesis, and chondrogenesis including components of the WNT signaling pathway. As WNT signaling is a known contributor to bone development, we demonstrated that SIX1 is required for expression of the WNT antagonist Frzb in the mandibular arch, and determined that SIX1 expression results in repression of WNT signaling. CONCLUSION: Our results clarify the mechanisms by which SIX1 regulates the development of NC-derived craniofacial elements that are altered in SIX1-associated disorders. In addition, this work identifies novel genes that could be causative to this birth defect and establishes a link between SIX1 and WNT signaling during patterning of NC cells.

7.
Nat Commun ; 14(1): 2026, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37041148

RESUMO

Craniofacial microsomia (CFM; also known as Goldenhar syndrome), is a craniofacial developmental disorder of variable expressivity and severity with a recognizable set of abnormalities. These birth defects are associated with structures derived from the first and second pharyngeal arches, can occur unilaterally and include ear dysplasia, microtia, preauricular tags and pits, facial asymmetry and other malformations. The inheritance pattern is controversial, and the molecular etiology of this syndrome is largely unknown. A total of 670 patients belonging to unrelated pedigrees with European and Chinese ancestry with CFM, are investigated. We identify 18 likely pathogenic variants in 21 probands (3.1%) in FOXI3. Biochemical experiments on transcriptional activity and subcellular localization of the likely pathogenic FOXI3 variants, and knock-in mouse studies strongly support the involvement of FOXI3 in CFM. Our findings indicate autosomal dominant inheritance with reduced penetrance, and/or autosomal recessive inheritance. The phenotypic expression of the FOXI3 variants is variable. The penetrance of the likely pathogenic variants in the seemingly dominant form is reduced, since a considerable number of such variants in affected individuals were inherited from non-affected parents. Here we provide suggestive evidence that common variation in the FOXI3 allele in trans with the pathogenic variant could modify the phenotypic severity and accounts for the incomplete penetrance.


Assuntos
Síndrome de Goldenhar , Animais , Camundongos , Síndrome de Goldenhar/patologia , Assimetria Facial , Linhagem , Fatores de Transcrição Forkhead
8.
Int J Mol Sci ; 24(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36901686

RESUMO

The activation of Wnt/ß-catenin signalling is a prerequisite for odontogenesis. APC, a member of the AXIN-CK1-GSK3ß-APC ß-catenin destruction complex, functions to modulate Wnt/ß-catenin signalling to establish regular teeth number and positions. APC loss-of-function mutations are associated with the over-activation of WNT/ß-catenin signalling and subsequent familial adenomatous polyposis (FAP; MIM 175100) with or without multiple supernumerary teeth. The ablation of Apc function in mice also results in the constitutive activation of ß-catenin in embryonic mouse epithelium and causes supernumerary tooth formation. The objective of this study was to investigate if genetic variants in the APC gene were associated with supernumerary tooth phenotypes. We clinically, radiographically, and molecularly investigated 120 Thai patients with mesiodentes or isolated supernumerary teeth. Whole exome and Sanger sequencing identified three extremely rare heterozygous variants (c.3374T>C, p.Val1125Ala; c.6127A>G, p.Ile2043Val; and c.8383G>A, p.Ala2795Thr) in APC in four patients with mesiodentes or a supernumerary premolar. An additional patient with mesiodens was compound as heterozygous for two APC variants (c.2740T>G, p.Cys914Gly, and c.5722A>T, p.Asn1908Tyr). Rare variants in APC in our patients are likely to contribute to isolated supernumerary dental phenotypes including isolated mesiodens and an isolated supernumerary tooth.


Assuntos
Polipose Adenomatosa do Colo , Dente Supranumerário , Animais , Humanos , Camundongos , Polipose Adenomatosa do Colo/genética , Proteína da Polipose Adenomatosa do Colo/genética , beta Catenina/genética , Genes APC , Dente Supranumerário/complicações , Dente Supranumerário/genética
9.
Am J Med Genet A ; 191(5): 1227-1239, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36751037

RESUMO

AMOTL1 encodes angiomotin-like protein 1, an actin-binding protein that regulates cell polarity, adhesion, and migration. The role of AMOTL1 in human disease is equivocal. We report a large cohort of individuals harboring heterozygous AMOTL1 variants and define a core phenotype of orofacial clefting, congenital heart disease, tall stature, auricular anomalies, and gastrointestinal manifestations in individuals with variants in AMOTL1 affecting amino acids 157-161, a functionally undefined but highly conserved region. Three individuals with AMOTL1 variants outside this region are also described who had variable presentations with orofacial clefting and multi-organ disease. Our case cohort suggests that heterozygous missense variants in AMOTL1, most commonly affecting amino acid residues 157-161, define a new orofacial clefting syndrome, and indicates an important functional role for this undefined region.


Assuntos
Fenda Labial , Fissura Palatina , Cardiopatias Congênitas , Humanos , Fissura Palatina/diagnóstico , Fissura Palatina/genética , Fenda Labial/diagnóstico , Fenda Labial/genética , Mutação , Mutação de Sentido Incorreto/genética , Cardiopatias Congênitas/diagnóstico , Cardiopatias Congênitas/genética , Angiomotinas
10.
Biology (Basel) ; 12(2)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36829498

RESUMO

BACKGROUND: Low density lipoprotein receptor-related protein 4 (LRP4; MIM 604270) modulates WNT/ß-catenin signaling, through its binding of WNT ligands, and to co-receptors LRP5/6, and WNT inhibitors DKK1, SOSTDC1, and SOST. LRP4 binds to SOSTDC1 and WNT proteins establishing a negative feedback loop between Wnt/ß-catenin, Bmp, and Shh signaling during the bud and cap stages of tooth development. Consistent with a critical role for this complex in developing teeth, mice lacking Lrp4 or Sostdc1 have multiple dental anomalies including supernumerary incisors and molars. However, there is limited evidence supporting variants in LRP4 in human dental pathologies. METHODS: We clinically, radiographically, and molecularly investigated 94 Thai patients with mesiodens. Lrp4 mutant mice were generated in order to study the effects of aberrant Lrp4 expression in mice. RESULTS: Whole exome and Sanger sequencing identified three extremely rare variants (c.4154A>G, p.Asn1385Ser; c.3940G>A, p.Gly1314Ser; and c.448G>A, p.Asp150Asn) in LRP4 in seven patients with mesiodens. Two patients had oral exostoses and two patients had root maldevelopments. Supernumerary incisors were observed in Lrp4 mutant mice. CONCLUSIONS: Our study implicates heterozygous genetic variants in LRP4 as contributing factors in the presentation of mesiodens, root maldevelopments, and oral exostoses, possibly as a result of altered WNT/ß-catenin-BMP-SHH signaling.

11.
Genes (Basel) ; 14(2)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36833193

RESUMO

BACKGROUND: Generalized pustular psoriasis (GPP; MIM 614204) is a rare and severe pustular autoinflammatory skin disease in which acute generalized erythema and scaling develop with numerous sterile pustules. GPP shares skin manifestations, especially pustular skin reaction, with adult-onset immunodeficiency (AOID) with anti-interferon-γ autoantibodies, an autoimmune disease. METHODS: Clinical examinations and whole-exome sequencing (WES) were performed on 32 patients with pustular psoriasis phenotypes and 21 patients with AOID with pustular skin reaction. Immunohistochemical and histopathological studies were performed. RESULTS: WES identified three Thai patients presenting with similar pustular phenotypes-two with a diagnosis of AOID and the other with GPP. A heterozygous missense variant chr18:g.61325778C>A NM_006919.2: c.438G>T; NP_008850.1: p.Lys146Asn; rs193238900 in SERPINB3 was identified in two patients: one with GPP and the other with AOID. The other patient who had AOID carried a heterozygous missense variant chr18:g.61323147T>C NM_006919.2: c.917A>G; NP_008850.1: p.Asp306Gly in SERPINB3. Immunohistochemical studies showed overexpression of SERPINA1 and SERPINB3, a hallmark of psoriatic skin lesions. CONCLUSIONS: Genetic variants in SERPINB3 are associated with GPP and AOID with pustular skin reaction. The skin of patients with GPP and AOID carrying SERPINB3 mutations showed overexpression of SERPINB3 and SERPINA1. Clinically and genetically, GPP and AOID appear to share pathogenetic mechanisms.


Assuntos
Síndromes de Imunodeficiência , Doenças da Imunodeficiência Primária , Psoríase , Dermatopatias Vesiculobolhosas , Humanos , Interleucinas/genética , Psoríase/genética , Pele/patologia , Mutação , Dermatopatias Vesiculobolhosas/patologia , Doenças da Imunodeficiência Primária/patologia
12.
Genes (Basel) ; 14(2)2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36833249

RESUMO

One of the most important steps in post-translational modifications of collagen type I chains is the hydroxylation of carbon-3 of proline residues by prolyl-3-hydroxylase-1 (P3H1). Genetic variants in P3H1 have been reported to cause autosomal recessive osteogenesis imperfecta (OI) type VIII. Clinical and radiographic examinations, whole-exome sequencing (WES), and bioinformatic analysis were performed in 11 Thai children of Karen descent affected by multiple bone fractures. Clinical and radiographic findings in these patients fit OI type VIII. Phenotypic variability is evident. WES identified an intronic homozygous variant (chr1:43212857A > G; NM_022356.4:c.2055 + 86A > G) in P3H1 in all patients, with parents in each patient being heterozygous for the variant. This variant is predicted to generate a new "CAG" splice acceptor sequence, resulting in the incorporation of an extra exon that leads to a frameshift in the final exon and subsequent non-functional P3H1 isoform a. Alternative splicing of P3H1 resulting in the absence of functional P3H1 caused OI type VIII in 11 Thai children of Karen descent. This variant appears to be specific to the Karen population. Our study emphasizes the significance of considering intronic variants.


Assuntos
Osteogênese Imperfeita , Prolil Hidroxilases , Criança , Humanos , Processamento Alternativo , Colágeno Tipo I/genética , Mutação , Osteogênese Imperfeita/genética , Processamento de Proteína Pós-Traducional , Prolil Hidroxilases/genética
13.
Orthod Craniofac Res ; 26(3): 338-348, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36245435

RESUMO

BACKGROUND: Bone remodelling during development and growth is important for craniofacial integrity of offspring. The aim of this study was to investigate the changes in offspring adult skull morphology when the osteoclasts number was altered in utero, using three-dimensional (3D) geometric morphometric analysis (GMA). MATERIALS AND METHODS: We altered osteoclasts number in utero via two approaches. First, we generated heterozygous CtskCre ;DTAfl/+ (diphtheria toxin A) mice. Second, we altered Ctsk expression in vivo by injecting pregnant wild-type dams at embryonic day (E) 12.5 with in vivo siRNA specific for Ctsk. Mice were collected at 6 weeks and analysed using geometric morphometric analysis via computed tomography, histomorphometry and gene expression analysis. RESULTS: Altering osteoclasts number in utero affected the offspring adult skull morphology. Decreased Ctsk and osteoclast numbers were associated with a decrease in cranial vault height and an increase in mandibular body length. Changes in size and shape were observed with an increased number of osteoclasts in CtskCre ;DTAfl/+ mice, including an increase in cranial vault height, as well as a shortening of mandibular body length and ramus height. CONCLUSION: The findings of this study suggest that modulation of osteoclast numbers during pre- and post-natal development may be a previously unknown factor in the aetiology of skeletal malocclusions. An improved understanding of the factors affecting bone homeostasis during development and growth may help in the development of future therapies that would target the early intervention of skeletal malocclusion.


Assuntos
Osteoclastos , Dente , Animais , Feminino , Camundongos , Gravidez , Remodelação Óssea/genética , Osteoclastos/metabolismo , Crânio/diagnóstico por imagem
14.
J Biomed Sci ; 29(1): 55, 2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-35909127

RESUMO

BACKGROUND: Infections by viruses including severe acute respiratory syndrome coronavirus 2 could cause organ inflammations such as myocarditis, pneumonia and encephalitis. Innate immunity to viral nucleic acids mediates antiviral immunity as well as inflammatory organ injury. However, the innate immune mechanisms that control viral induced organ inflammations are unclear. METHODS: To understand the role of the E3 ligase TRIM18 in controlling viral myocarditis and organ inflammation, wild-type and Trim18 knockout mice were infected with coxsackievirus B3 for inducing viral myocarditis, influenza A virus PR8 strain and human adenovirus for inducing viral pneumonia, and herpes simplex virus type I for inducing herpes simplex encephalitis. Mice survivals were monitored, and heart, lung and brain were harvested for histology and immunohistochemistry analysis. Real-time PCR, co-immunoprecipitation, immunoblot, enzyme-linked immunosorbent assay, luciferase assay, flow cytometry, over-expression and knockdown techniques were used to understand the molecular mechanisms of TRIM18 in regulating type I interferon (IFN) production after virus infection in this study. RESULTS: We find that knockdown or deletion of TRIM18 in human or mouse macrophages enhances production of type I IFN in response to double strand (ds) RNA and dsDNA or RNA and DNA virus infection. Importantly, deletion of TRIM18 protects mice from viral myocarditis, viral pneumonia, and herpes simplex encephalitis due to enhanced type I IFN production in vivo. Mechanistically, we show that TRIM18 recruits protein phosphatase 1A (PPM1A) to dephosphorylate TANK binding kinase 1 (TBK1), which inactivates TBK1 to block TBK1 from interacting with its upstream adaptors, mitochondrial antiviral signaling (MAVS) and stimulator of interferon genes (STING), thereby dampening antiviral signaling during viral infections. Moreover, TRIM18 stabilizes PPM1A by inducing K63-linked ubiquitination of PPM1A. CONCLUSIONS: Our results indicate that TRIM18 serves as a negative regulator of viral myocarditis, lung inflammation and brain damage by downregulating innate immune activation induced by both RNA and DNA viruses. Our data reveal that TRIM18 is a critical regulator of innate immunity in viral induced diseases, thereby identifying a potential therapeutic target for treatment.


Assuntos
Encefalite por Herpes Simples , Miocardite , Ubiquitina-Proteína Ligases , Viroses , Animais , Antivirais , Humanos , Imunidade Inata , Inflamação/genética , Camundongos , Miocardite/genética , Miocardite/virologia , Proteína Fosfatase 2C , RNA , Ubiquitina-Proteína Ligases/genética
15.
J Cell Biol ; 221(4)2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35266954

RESUMO

Missense mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of familial Parkinson's disease (PD); however, pathways regulating LRRK2 subcellular localization, function, and turnover are not fully defined. We performed quantitative mass spectrometry-based interactome studies to identify 48 novel LRRK2 interactors, including the microtubule-associated E3 ubiquitin ligase TRIM1 (tripartite motif family 1). TRIM1 recruits LRRK2 to the microtubule cytoskeleton for ubiquitination and proteasomal degradation by binding LRRK2911-919, a nine amino acid segment within a flexible interdomain region (LRRK2853-981), which we designate the "regulatory loop" (RL). Phosphorylation of LRRK2 Ser910/Ser935 within LRRK2 RL influences LRRK2's association with cytoplasmic 14-3-3 versus microtubule-bound TRIM1. Association with TRIM1 modulates LRRK2's interaction with Rab29 and prevents upregulation of LRRK2 kinase activity by Rab29 in an E3-ligase-dependent manner. Finally, TRIM1 rescues neurite outgrowth deficits caused by PD-driving mutant LRRK2 G2019S. Our data suggest that TRIM1 is a critical regulator of LRRK2, controlling its degradation, localization, binding partners, kinase activity, and cytotoxicity.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Doença de Parkinson , Proteínas Serina-Treonina Quinases , Proteínas com Motivo Tripartido , Citoesqueleto , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Proteínas Associadas aos Microtúbulos , Microtúbulos , Mutação , Doença de Parkinson/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Fatores de Transcrição , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Proteínas rab de Ligação ao GTP/metabolismo
16.
Dis Model Mech ; 15(4)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35284927

RESUMO

Auriculocondylar syndrome 2 (ARCND2) is a rare autosomal dominant craniofacial malformation syndrome linked to multiple genetic variants in the coding sequence of phospholipase C ß4 (PLCB4). PLCB4 is a direct signaling effector of the endothelin receptor type A (EDNRA)-Gq/11 pathway, which establishes the identity of neural crest cells (NCCs) that form lower jaw and middle ear structures. However, the functional consequences of PLCB4 variants on EDNRA signaling is not known. Here, we show, using multiple signaling reporter assays, that known PLCB4 variants resulting from missense mutations exert a dominant-negative interference over EDNRA signaling. In addition, using CRISPR/Cas9, we find that F0 mouse embryos modeling one PLCB4 variant have facial defects recapitulating those observed in hypomorphic Ednra mouse models, including a bone that we identify as an atavistic change in the posterior palate/oral cavity. Remarkably, we have identified a similar osseous phenotype in a child with ARCND2. Our results identify the disease mechanism of ARCND2, demonstrate that the PLCB4 variants cause craniofacial differences and illustrate how minor changes in signaling within NCCs may have driven evolutionary changes in jaw structure and function. This article has an associated First Person interview with the first author of the paper.


Assuntos
Otopatias , Animais , Orelha/anormalidades , Otopatias/genética , Humanos , Camundongos , Crista Neural , Fenótipo , Fosfolipase C beta/genética
17.
Am J Orthod Dentofacial Orthop ; 161(5): e446-e455, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35131118

RESUMO

INTRODUCTION: The effects on offspring craniofacial bone morphology and accretion because of altered maternal exposure to dietary components such as calcium (Ca) and phosphorus (P) are unclear. The objective of this study was to investigate the changes in offspring skull morphology and tissue mineral density (TMD), including sex-specific changes, with exposure to a maternal diet high in Ca-to-P levels during gestation and lactation in mice. METHODS: Time-mated FVB wild-type mice were fed a normal or experimental diet during gestation until weaning. The experimental diet contained a 3-fold increase in Ca and a 3-fold decrease in P (Ca:P molar ratio, 10.5) compared with normal mouse chow (Ca:P molar ratio, 1.5). The heads of 6-week-old control and experimental offspring mice were collected and scanned using microcomputed tomography. Three-dimensional geometric morphometric analysis was performed to analyze changes in craniofacial morphology. TMD measurements were also analyzed. RESULTS: We observed subtle changes and no significant differences between offspring control and experimental skulls when we compared all samples. However, when we separated skulls by sex, we discovered significant differences in craniofacial morphology and TMD. Experimental female offspring possessed skulls that were smaller, narrower transversely, taller vertically, and decreased in TMD. Experimental male offspring possessed skulls that were larger, wider transversely, shorter vertically, and increased in TMD. CONCLUSIONS: Maternal exposure to diet and increased Ca:P molar ratio during gestation and lactation led to significant, sex-specific morphologic and TMD changes in 6-week-old mouse skulls.


Assuntos
Cálcio , Fósforo , Animais , Suplementos Nutricionais , Feminino , Humanos , Lactação , Masculino , Camundongos , Gravidez , Microtomografia por Raio-X
18.
Genes (Basel) ; 14(1)2022 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-36672844

RESUMO

BACKGROUND: Generalized pustular psoriasis (GPP; MIM 614204) is a rare multisystemic autoinflammatory disease, characterized by episodes of acute generalized erythema and scaling developed with the spread of numerous sterile pustules. Adult-onset immunodeficiency syndrome (AOID) with anti-interferon-γ autoantibodies is an immunodeficiency disorder associated with disruptive IFN-γ signaling. METHODS: Clinical examination and whole exome sequencing (WES) were performed on 32 patients with pustular psoriasis phenotypes and 21 patients with AOID with pustular skin reaction. Histopathological and immunohistochemical studies were performed. RESULTS: WES identified four Thai patients presenting with similar pustular phenotypes-two with a diagnosis of GPP and the other two with AOID-who were found to carry the same rare TGFBR2 frameshift mutation c.458del; p.Lys153SerfsTer35, which is predicted to result in a marked loss of functional TGFBR2 protein. The immunohistochemical studied showed overexpression of IL1B, IL6, IL17, IL23, IFNG, and KRT17, a hallmark of psoriatic skin lesions. Abnormal TGFB1 expression was observed in the pustular skin lesion of an AOID patient, suggesting disruption to TGFß signaling is associated with the hyperproliferation of the psoriatic epidermis. CONCLUSIONS: This study implicates disruptive TGFBR2-mediated signaling, via a shared truncating variant, c.458del; p.Lys153SerfsTer35, as a "predisposing risk factor" for GPP and AOID.


Assuntos
Doenças da Imunodeficiência Primária , Psoríase , Dermatopatias Vesiculobolhosas , Humanos , Interleucinas/genética , Doenças da Imunodeficiência Primária/patologia , Psoríase/genética , Psoríase/patologia , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Pele/patologia , Dermatopatias Vesiculobolhosas/patologia
20.
Development ; 148(17)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34383890

RESUMO

Neural crest cells (NCCs) within the mandibular and maxillary prominences of the first pharyngeal arch are initially competent to respond to signals from either region. However, mechanisms that are only partially understood establish developmental tissue boundaries to ensure spatially correct patterning. In the 'hinge and caps' model of facial development, signals from both ventral prominences (the caps) pattern the adjacent tissues whereas the intervening region, referred to as the maxillomandibular junction (the hinge), maintains separation of the mandibular and maxillary domains. One cap signal is GATA3, a member of the GATA family of zinc-finger transcription factors with a distinct expression pattern in the ventral-most part of the mandibular and maxillary portions of the first arch. Here, we show that disruption of Gata3 in mouse embryos leads to craniofacial microsomia and syngnathia (bony fusion of the upper and lower jaws) that results from changes in BMP4 and FGF8 gene regulatory networks within NCCs near the maxillomandibular junction. GATA3 is thus a crucial component in establishing the network of factors that functionally separate the upper and lower jaws during development.


Assuntos
Padronização Corporal , Face/embriologia , Fator de Transcrição GATA3/metabolismo , Animais , Região Branquial/citologia , Região Branquial/embriologia , Região Branquial/metabolismo , Morte Celular , Proliferação de Células , Anormalidades Craniofaciais/embriologia , Anormalidades Craniofaciais/genética , Anormalidades Craniofaciais/metabolismo , Embrião de Mamíferos , Fator de Transcrição GATA3/genética , Regulação da Expressão Gênica no Desenvolvimento , Mandíbula/citologia , Mandíbula/embriologia , Maxila/citologia , Maxila/embriologia , Camundongos , Morfogênese , Crista Neural/citologia , Crista Neural/embriologia , Crista Neural/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...